julian-lorenz.de bewertung und analyse

Robots.txt Information
Robot Path Permission
GoogleBot /
BingBot /
BaiduSpider /
YandexBot /
Meta Tags
Title Algorithmic Trading | High Frequency Trading
Description Algorithmic
Keywords Algorithmic Trading
Server Information
WebSite julian-lorenz faviconjulian-lorenz.de
Host IP 164.68.106.253
Location United States
Mehr zu entdecken
Site
kathpress.at
kittenbeds.com
kochecke.at
kredit.com
landundforst.de
lebenindenusa.com
liberty-woman.com
liquidgrape.de
loomee-tv.de
mandatehealth.com
master-enhance.com
mcam.com
moelk.co
mvegraveyard.com
n-a-g.info
julian-lorenz.de bewertung
Euro500
Zuletzt aktualisiert: 2022-06-23 05:01:30

julian-lorenz.de hat Semrush globalen Rang von 0. julian-lorenz.de hat einen geschätzten Wert von € 500, basierend auf seinen geschätzten Werbeeinnahmen. julian-lorenz.de empfängt jeden Tag ungefähr 500 einzelne Besucher. Sein Webserver befindet sich in United States mit der IP-Adresse 164.68.106.253. Laut SiteAdvisor ist julian-lorenz.de sicher zu besuchen.

Verkehr & Wertschätzungen
Kauf-/Verkaufswert Euro€500
Tägliche Werbeeinnahmen Euro€500
Monatlicher Anzeigenumsatz Euro€500
Jährliche Werbeeinnahmen Euro€500
Tägliche eindeutige Besucher 500
Hinweis: Alle Traffic- und Einnahmenwerte sind Schätzungen.
DNS Records
Host Type TTL Data
julian-lorenz.de. A 299 IP: 164.68.106.253
julian-lorenz.de. NS 300 NS Record: docks01.rzone.de.
julian-lorenz.de. NS 300 NS Record: shades14.rzone.de.
julian-lorenz.de. MX 300 MX Record: 5 smtpin.rzone.de.
HtmlToTextCheckTime:2022-06-23 05:01:30
Algorithmic Trading Julian Lorenz I graduated from ETH Zurich in 2008 where I wrote my PhD thesis on topics in the area of mathematical optimization and algorithmic trading. See below a list of my research papers. Research on models and algorithms for financial markets, especially "Optimal Execution of Portfolio Transactions". Optimal Execution of Portfolio Transactions R. Almgren , J. Lorenz: Adaptive Arrival Price . Algorithmic Trading III , Spring 2007. (shortened version of this earlier preprint ) Arrival price a lgorithms determine optimal trade schedules by balancing the market impact cost of rapid execution against the volatility risk of slow execution. In the standard formulation, mean-variance optimal strategies are static: they do not modify the execution speed in response to price motions observed during trading. We show that with a more realistic formulation of the mean-variance tradeoff, and even with no momentum or mean reversion in the price process, substantial
HTTP Headers
HTTP/1.1 200 OK
Date: Sun, 24 Oct 2021 07:32:42 GMT
Server: Apache/2.4.29 (Ubuntu)
Last-Modified: Sat, 21 Sep 2019 18:31:39 GMT
ETag: "3af6-5931465bd84ff"
Accept-Ranges: bytes
Content-Length: 15094
Vary: Accept-Encoding
Content-Type: text/html